Supplementary Information 1

A Novel Migrative Addition Reactions of Hydrazines to the Diketone Derivative of C_{60}

Sho-ichi Iwamatsu,* Fumiaoki Ono, and Shizuaki Murata

Experimental procedures and characterization data page 2-5
Computational procedures and Cartesian coordinate of **3a-I** page 6-8

General. All reactions were performed under argon atmosphere unless otherwise mentioned. Column chromatography was performed on silica gel (Merck, 230-400 mesh or Fuji silicia, FL-600) using indicated solvents. Thin layer chromatography was performed on glass plates coated with silica gel 60 F_{254} (Merck). Melting points were recorded in capillary tubes with SHIBATA MEL270 melting point apparatus and were uncorrected. All NMR studies were carried out on JEOL α 400 (¹H at 400 MHz, ¹³C at 100 MHz), α 600 (¹H at 400 MHz, ¹³C at 100 MHz, ¹⁵N at 60.7 MHz) or Lambda 500 (¹H at 500 MHz, ¹³C at 125 MHz) spectrometers. Inadequate 1D experiments were performed with J_{cc} set to 77, 57 or 37 Hz. ¹⁵N chemical shifts are referenced relative to liquid ammonia by using the ¹⁵N resonance of formamide at 85 ppm as an external reference. FT-IR spectra were recorded on a JASCO FT/IR-5300 instrument. UV/Vis spectra were recorded on a JASCO V-550 UV/Vis Spectrometer. Emission spectra were recorded on a JASCO FP-6600 Fluorescence Spectrometer. ES-Mass spectra were recorded in the negative ion modes on a micromass LCT instrument. Elemental analyses were performed by the microanalytical center of Kyoto University.

Materials. Pure C₆₀ (99.5%), ¹³C enriched (10-15%) C₆₀ were obtained from Tokyo Progress System Co, Ltd. ¹⁵N enriched hydrazine sulfate ($^{15}NH_2^{15}NH_2H_2SO_4$: 99% ¹⁵N content for each nitrogen atom) was purchased from Aldrich Co, Ltd. The preparation of diketone derivative **1** was already reported.¹ ¹⁵N enriched 2,4-dinitrophenylhydrazine **2b** was prepared according to the literature method.² Solvents were distilled under an inert atmosphere from sodium/benzophenone (toluene) or CaH₂ (pyridine). Other reagents and solvents were purchased reagent grade and used as received.

REFERENCES

- H. Inoue, H. Yamaguchi, S.-i. Iwamatsu, T. Uozaki, T. Suzuki, T. Akasaka, S. Nagase, S. Murata, *Tetrahedron Lett.* 2001, 42, 895.
- 2. C. F. H. Allen, Org. Synth. 1943, 2, 228.

Typical procedure for the reaction of 1 with aromatic hydrazine.

(entry 1) In a 50 mL Schlenk tube, to a solution of 1 (20 mg, 0.019 mmol) in toluene (5 mL) was added 2a (11 mg, 0.10 mmol), and the reaction mixture was stirred for 4 h at room temperature. The resulting mixture was subjected to chromatography (silica, 4% EtOAc/toluene) to give 18 mg (81%) of 3a as a dark brown solid. (entry 3) In a 50 mL Schlenk tube, to a mixture of 2c·HCl (17 mg, 0.097 mmol) and 1 (20 mg, 0.019 mmol) in toluene (5 mL) was added pyridine (16 μ L, 0.20 mmol), and the mixture was stirred for 8 h at 60 °C. After cooling to room temperature, the resulting solution was washed with 2N HCl (×2) and brine, dried with MgSO₄, and subjected to chromatography (silica, 4% EtOAc/toluene) to give 19 mg (85%) of 3c as a dark brown solid.

3a: mp. >300 °C; ¹H NMR (CDCl₃) δ 13.86 (s, 1H), 7.71 (d, *J* = 8 Hz, 2H), 7.54 (t, *J* = 8 Hz, 2H), 7.3-7.2 (overlap, 1H), 5.30 (d, *J* = 20 Hz, 1H), 4.73 (d, *J* = 20 Hz, 1H), 4.26 (s, 3H), 3.93 (s, 3H), 3.88 (s, 3H), 3.74 (s, 3H); ¹³C NMR/DEPT135 (CDCl₃) δ 190.52, 185.61, 170.25, 168.84, 167.15, 164.87, 154.48, 151.16, 150.43, 149.60, 149.54, 149.47, 149.34, 148.96, 148.53, 148.47, 148.15, 147.89, 147.70, 147.65, 147.59, 147.48, 147.23, 147.01, 146.93, 146.73, 146.21, 145.41, 145.35, 145.33, 144.92, 144.08, 143.94, 143.49, 142.93, 142.64, 142.60, 142.52, 142.50, 142.32, 141.06, 140.82, 140.41, 140.20, 138.00, 137.94, 137.85, 137.75, 137.28, 136.12, 136.01, 135.84, 135.67, 135.57, 135.22, 135.12, 133.87, 132.61, 131.64, 131.52, 129.90 (CH), 128.39, 128.21, 126.27, 125.71, 124.92 (CH), 115.34 (CH), 63.86, 55.86, 54.33 (CH₃), 54.20 (CH₃), 53.30 (CH₃), 52.88 (CH₃), 43.80 (CH₂); IR (KBr) 2940, 1744, 1686, 1537, 1478, 1433, 1260, 1225 cm⁻¹; UV/Vis (CH₂Cl₂) λ_{max} (ϵ) 253 (110,000), 329 (40,000), 438 (21,000), 536 (13,000), 681 (4,500) nm; ES-MS (neg.) 1144 (M⁻); Anal calcd for C₇₈H₂₀N₂O₁₀: C. 81.82, H. 1.76, N. 2.45. found: C. 81.54, H. 2.05, N. 2.20.

3b: 50% yield; ¹H NMR (C₆D₆) δ 15.32 (s, 1H), 8.81 (d, *J* = 2 Hz, 1H), 7.95 (d, *J* = 9 Hz, 1H), 7.91 (dd, *J* = 9, 2 Hz, 1H), 5.23 (d, *J* = 20 Hz, 1H), 4.55 (d, *J* = 20 Hz, 1H), 4.37 (s, 3H), 3.62 (s, 3H), 3.40 (s, 3H), 3.19 (s, 3H); ¹⁵N NMR (C₆D₆/C₆H₅Cl=1/4) δ 301 (d, *J*_{NN} = 12 Hz), 126 (dd, *J*_{NN} = 12, *J*_{NH} = 102 3

Hz); IR (KBr) v (cm⁻¹) 2948, 1744, 1720, 1709, 1686, 1613, 1596, 1496, 1433, 1336, 1224; UV/Vis (CH₂Cl₂) λ_{max} (ϵ) 251 (100,000), 312 (40,000), 393 (27,000), 443 (26,000), 481 (26,000), 675 (2,700); ES-MS (neg.) 1234 (M⁻); (Measurement of ¹³C NMR spectrum has not been in success because of low solubility)

3c: 85% yield; mp. >300 °C; ¹H NMR (CDCl₃) δ 14.00 (s, 1H), 7.68 (d, J = 9 Hz, 2H), 7.09 (d, J = 9 Hz, 2H), 5.30 (d, J = 20 Hz, 1H), 4.70 (d, J = 20 Hz, 1H), 4.24 (s, 3H), 3.92 (s, 3H), 3.91 (s, 3H), 3.88 (s, 3H), 3.73 (s, 3H); ¹³C NMR (CDCl₃) δ 190.46, 185.48, 170.30, 168.90, 167.14, 164.91, 157.58, 154.56, 151.13, 150.42, 149.65, 149.52, 149.48, 149.36, 148.87, 148.63, 148.57, 148.08, 147.94, 147.75, 147.70, 147.64, 147.51, 147.48, 147.14, 147.05, 146.97, 146.76, 146.27, 145.44, 145.37, 145.10, 144.90, 144.10, 144.00, 142.82, 142.70, 142.62, 142.18, 141.07, 140.83, 140.49, 140.14, 138.82, 138.27, 137.98, 137.95, 137.93, 137.57, 137.20, 136.19, 136.18, 136.04, 135.87, 135.85, 135.11, 135.08, 134.96, 133.88, 132.65, 131.32, 131.11, 128.43, 128.25, 126.28, 125.72, 116.77, 115.33 55.74, 54.32, 54.19, 53.27, 52.86, 43.69 (two sp³ quaternary carbons assigned to the fulleroid bridge positions could not be detected because of low solubility); IR (KBr) v (cm⁻¹) 2949, 1744, 1723, 1686, 1537, 1512, 1480, 1435, 1244, 1229; UV/Vis (CH₂Cl₂) λ_{max} (ε) 254 (110,000), 331 (38,000), 448 (19,000), 550 (13,000), 699 (7,600) nm; ES-MS (neg.) 1174 (M⁻); Anal calcd for C₇₉H₂₂N₂O₁₁: C. 80.75, H. 1.89, N. 2.38. found: C. 80.22, H. 2.04, N. 2.11.

3d: 89% yield; mp. >300 °C; ¹H NMR (CDCl₃) δ 13.83 (s, 1H), 7.65 (d, *J* = 9 Hz, 2H), 7.59 (d, *J* = 9 Hz, 2H), 5.25 (d, *J* = 20 Hz, 1H), 4.68 (d, *J* = 20 Hz, 1H), 4.23 (s, 3H), 3.93 (s, 3H), 3.88 (s, 3H), 3.74 (s, 3H); ¹³C NMR (CDCl₃) δ 190.57, 185.76, 170.21, 168.76, 166.91, 164.83, 154.39, 151.10, 150.44, 149.58, 149.56, 149.49, 149.36, 149.00, 148.54, 148.37, 148.20, 147.89, 147.79, 147.73, 147.62, 147.48, 147.23, 147.01, 146.93, 146.75, 146.20, 145.50, 145.39, 145.34, 144.91, 144.11, 143.97, 143.57, 143.01, 142.61, 142.47, 142.41, 141.68, 141.49, 141.06, 140.84, 140.35, 140.23, 138.03, 137.95, 137.89, 137.35, 137.18, 136.46, 136.10, 136.01, 135.55, 135.31, 135.30, 135.09, 133.84, 132.89, 132.55, 131.95, 131.61, 4

128.35, 128.28, 128.21, 126.25, 125.70, 117.39, 116.73, 54.36, 54.24, 53.28, 52.91, 43.88 (two sp³ quaternary carbons assigned to the fulleroid bridge positions could not be detected because of low solubility); IR (KBr) v (cm⁻¹) 2948, 1744, 1723, 1688, 1588, 1537, 1474, 1433, 1256, 1225; UV/Vis (CH₂Cl₂) λ_{max} (ϵ) 253 (110,000), 328 (41,000), 439 (22,000), 537 (14,000), 682 (5,000) nm; ES-MS (neg.) 1223 (M⁻H+2, 34), 1221 (M⁻H, 20), 1036(100); Anal calcd for C₇₈H₁₉BrN₂O₁₀: C. 76.55, H. 1.56, N. 2.29. found: C. 75.90, H. 1.44, N. 2.04.

3e: 85% yield; mp. >300 °C; ¹H NMR (CDCl₃) δ 7.8-7.2 (br, 10H), 4.88 (d, J = 20 Hz, 1H), 4.70 (d, J = 20 Hz, 1H), 4.33 (s, 3H), 3.93 (s, 3H), 3.92 (s, 3H), 3.74 (s, 3H); ¹³C NMR (CDCl₃) δ 190.20, 183.25, 170.47, 169.33, 168.35, 164.95, 163.73, 155.62, 150.23, 149.79, 149.44, 149.42, 149.40, 149.22, 148.44, 148.41, 148.24, 147.75, 147.60, 147.51, 147.47, 147.39, 147.37, 146.85, 146.77, 146.72, 146.33, 145.83, 145.43, 145.36, 145.34, 144.66, 144.07, 143.80, 143.71, 143.57, 142.80, 142.61, 142.45, 141.91, 140.87, 140.68, 140.61, 138.84, 138.13, 138.00, 137.87, 137.79, 137.77, 137.50, 136.90, 136.30, 136.02, 135.72, 135.56, 134.98, 134.60, 133.82, 132.71, 131.74, 131.22, 129.37, 129.28, 128.59, 128.36, 126.63, 125.76, 63.73, 56.02, 54.34, 54.13, 53.16, 52.83, 40.83; IR (KBr) v (cm⁻¹) 2948, 1734, 1718, 1694, 1530, 1487, 1433, 1271, 1223; UV/Vis (CH₂Cl₂) λ_{max} (ϵ) 255 (110,000), 329 (40,000), 439 (13,000), 546 (10,000), 678 (5,100) nm; ES-MS 1220 (M⁻); Anal calcd for C₈₄H₂₄N₂O₁₀: C. 82.62, H. 1.98, N. 2.29. found: C. 82.60, H. 1.98, N. 2.16.

Calculations. All calculations were carried out using Hyper Chem 6.0^3 and GAUSSIAN 98 (Revision A.11)⁴ set of programs. Possible structures **3a-I**, **3a-II** and **3a-III** were optimized at the AM1 level. Structure **3a-I** was further optimized at the B3LYP/6-31G* level.

REFERENCES

- ^{3.} HyperChem (TM), Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601.
- ^{4.} Gaussian 98, Revision A.11, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, Jr., J. A., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S. & Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.

Cartesian coordinate of **3a-I** optimized at the B3LYP/6-31G(d) level.

E(UB+HF-LYP) = -3845.8753 au.						С	0	4.94174	2.639745	0.087271
0	1	ŕ				С	0	5.078379	2.08518	1.426254
С	0	-3.920753	5.347721	-1.139771		С	0	3.967542	2.568319	2.219666
С	0	-4.372207	4.032291	-0.964174		С	0	3.365026	1.733561	3.16218
С	0	-5.625634	3.780126	-0.386766		С	0	1.922747	1.721334	3.281033
С	0	-6.424775	4.848979	0.009799		Ċ	0	1.476989	0.368169	3.508305
С	0	-5.985477	6.164075	-0.161006		Č	Õ	0 258857	-0.081912	2 963358
С	0	-4.732644	6.403386	-0.73345		Č	Õ	-1 078471	-0 341941	-2 373272
Č	Ő	3.152558	-2.985989	1.105963		C	Õ	-0.808115	-1 77896	1 461799
Č	Ő	1 718282	-2.957208	1 219601		\tilde{c}	Õ	1 414464	3 37525	-0.959119
Č	Õ	0.881266	-2.903705	0.097792		C	0	-2 146034	-1 113824	1 680205
č	Õ	1 475727	-2 793348	-1 231213		C	0	-3 168361	-1.113024 -1.472078	0.610796
C	Õ	2 883238	-2 850885	-1 328955		C	0	2 82802	2 068524	0.511528
C	Õ	3 728291	-2 939013	-0.152956		C	0	-2.82803	-2.008334	-0.344328
C	0	3 722812	-2.757015	2 205096		C	0	-1.404347	-2.404/13	-0.911037
C	0	2.722012	-2.228833	2.205090		C	0	-2.08142	-1.3/0624	3.0/31/3
C	0	2.010102	-1./54011	2.993008		C	0	-4.619893	-1.10/144	0.894831
C	0	1.364/33	-2.1975	2.403883		C	0	-3.918208	-2.40008	-1.522821
C	0	0.211296	-1.44/222	2.431695		C	0	-1.44508	-3.968438	-1.4049/4
C	0	-0.4/5601	-2.449529	0.309384		0	0	-2.677242	1.206598	1.185038
C	0	0./19529	-2.00/613	-2.21918		0	0	-3.428/17	0.288661	-1.952441
C	0	1.4/6109	-1.255004	-3.136646		N	0	-2.350068	3.04159	-1.713123
C	0	2.917932	-1.251917	-3.17/053		0	0	-3.386529	-0.588739	3.66003
С	0	3.618481	-2.062193	-2.304042		0	0	-2.481992	-2.657513	3.555423
С	0	4.849777	-1.588556	-1.700272		0	0	-0.83843	-4.429403	-2.34082
С	0	4.925852	-2.142469	-0.367091		0	0	-2.22471	-4.691122	-0.580495
С	0	5.46257	-1.388433	0.680799		0	0	-5.171869	-2.054609	1.680717
С	0	4.849448	-1.433591	1.996963		0	0	-5.186677	-0.104519	0.535979
С	0	2.663909	-0.462558	3.548595		0	0	-3.413097	-2.696155	-2.73597
С	0	3.831667	0.37324	3.333093		0	0	-5.102615	-2.434931	-1.266045
С	0	4.901908	-0.099078	2.567579		Ν	0	-3.609798	2.926182	-1.357704
С	0	5.540371	0.775078	1.597915		С	0	-3.972908	-0.925447	4.932067
С	0	5.897818	-0.024209	0.438124		С	0	-6.57109	-1.870713	1.956688
С	0	5.798688	0.522464	-0.844031		Ċ	0	-4.378971	-2.990387	-3.758087
С	0	5.286097	-0.279204	-1.941291		Č	Õ	-2 312032	-6 095986	-0.880936
Ċ	0	4.516546	0.589025	-2.80982		H	Õ	-2.951565	5 522954	-1 59236
Ċ	0	3 373937	0 107324	-3 440245		Н	Ő	-5 948729	2 753449	-0 233076
Č	Ő	-0 662447	-1 604676	-1 949414		н	Õ	-7 393572	4 650826	0.459923
Č	Õ	0.912136	2 622363	-2 181963		н	0	-6.612421	6 995051	0.437723
č	õ	-0 275386	1 906053	-2 430794		и П	0	-0.012421	7 423653	0.149022
C	Ő	-1 680626	1.952665	-2.020321		п п	0	-4.384077	2 402476	-0.8/10/5
C	0	-0.508613	3 03377	0.8/3015			0	-1.101346	2.493470	0.123833
C	0	0.873448	3.445560	0.377731		п	0	-1.10072	5.915075	1.152041
C	0	0.873448	2 200766	1.059775		п	0	-4.013043	1.98/420	-1.2809/3
C	0	2.0/09	2,652006	-1.036/73		H	0	-3.193363	-1.200/12	5.64638/
C	0	5.299077	2.033090	-2.213091		H	0	-4.666926	-1./608/9	4.814446
C	0	2.116926	2.15/452	-2.86/0/1		H	0	-4.496387	-0.026241	5.255844
C	0	2.196364	0.934326	-3.543316		H	0	-7.135255	-1.883002	1.021122
C	0	1.059139	0.07565	-3.46218/		Н	0	-6.74114	-0.92127	2.471291
C	0	-0.112547	0.556076	-2.948431		Н	0	-6.855762	-2.711835	2.589522
C	0	-2.23/1/6	0.562342	-2.0/14/2		Н	0	-5.006416	-2.114145	-3.93898
С	0	-1.893708	0.436706	1.709211		Н	0	-5.01042	-3.830483	-3.458366
С	0	-0.635246	0.892169	2.349378		Н	0	-3.795497	-3.239642	-4.644155
С	0	-0.144572	2.159911	2.039118		Η	0	-1.322415	-6.556478	-0.827543
С	0	1.14909	2.55611	2.478918		Η	0	-2.724559	-6.245877	-1.881779
С	0	1.764452	3.395374	1.468886		Н	0	-2.97425	-6.512361	-0.122327
С	0	3.150455	3.415533	1.365152						
С	0	3.727683	3.438528	0.054629						
С	0	4.48976	1.912815	-2.21385						
С	0	5.310364	1.880245	-1.0197						